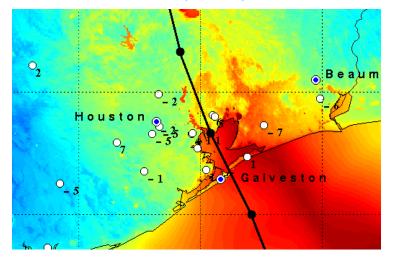


Coastal Ocean Observations, Risk Modeling and Reinsurance

Dail Rowe June 2, 2017

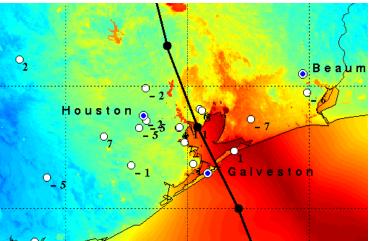
Blue Planet Symposium

- Risk Modeling
 - Anatomy of a Risk Model
 - More and Better Data = Better Risk Models
 - Everyone Wins
- Climate Variability and Change
 - Quantitative Understanding
 - Useful Prediction


Anatomy of a Risk Model

- Enables a probabilistic understanding of disaster impact
- Thousands of years of synthetic history
 - How often does a cat 5 hurricane hit Morehead City, NC?
 - How much damage occurs?
 - How often do we have 4 hurricane landfalls in Florida during a single year?
 - How does ENSO change all of that?
- Three components
 - Physical hazard
 - Hurricanes: Wind, rain, flood and waves
 - Winter storms, tornadoes, hail, derechos, rain-induced floods, earthquakes, wildfire, terrorism, cyber attacks, ..., ..., and ...
 - Vulnerability
 - Structure, contents, livability, business operations, etc.
 - Financial impact
- Accuracy is important

Data Improves Physical Hazard Models


- How often do cat 5s happen in NC?
 - Long, high-quality data records are essential
- How rapidly do winds decrease in the near-shore region?
 - High quality wind measurements near the coast
 - Hardened
 - Good meta-data
- How do wind gusts vary in different physical environments?
 - Gusts do most of the damage
 - Fields are different from cities

Ike (2008)

Data Improves Event Recreation

- Near real-time damage assessment and response
 - How much damage occurred?
 - Where?
- Long-term model improvement
 - Hazard
 - Vulnerability

lke (2008)

WeatherPredict

CONSULTING INC.

Data Improves Vulnerability Assessment

- Converting wind / water to damage
- Vulnerability curves are very steep
 - 10% change in wind ~ 100% change in damage
- Algorithms developed based on
 - Regression: Observed damage vs. modeled wind
 - Engineering judgment
- Small changes in modeled wind lead to large changes in perceived vulnerability
 - Accurate winds are essential...
 - ...so data are essential

- Industry
 - More realistic assessment of risk
- Communities and Homeowners
 - Better community planning
 - More effective building codes
 - Most effective investments for homeowners
 - Shutters vs. shingles?
- Everyone
 - Quantitative assessment of climate change impact

- ENSO, NAO, MJO, PDO, AMV and other climate variability
 - All impact the likelihood of natural disasters
- Difficult to leverage this knowledge due to short forecast lead times
- Better ocean observation / monitoring will (hopefully) contribute to improved long-range forecasting

Closing slide. This is the last page of the presentation.