Observing the Changing Ocean

David Legler

david.legler@noaa.gov Ocean Observing and Monitoring Division (OOMD) Climate Program Office

Contributions from IOOS, Dean Roemmich, and others

In Situ Platforms – Many Types

Traditiona

New

IGI ACC

Global In-Situ Sustained Ocean Observing

U.S. Leverages 50% of the Global Ocean Observing System

Essential ocean variables: temperature, salinity, currents/circulation, sealevel, sea-ice, air-sea fluxes, waves, ocean acoustics, surface meteorology, carbon/Ph and biological variables

Globally Sponsored Observing Networks

 Argo, surface drifters, RAMA, PIRATA, Oceansites, GLOSS Tide gauges (int'l and US), VOS, SOOP/XBT, OceanGliders, pCO2, GO-SHIP, Animal Tags/profiling, Tsunami

Key Attributes

- Global in coverage, fixed and Lagrangian/autonomous platform strategy
- International effort (dozens of countries contribute)
- Data reported in real-time (over 5000 platforms)

Status (May 2017)

- 3970 Operational Floats
- 10000 obs/month (70% of highest quality)
- 85% obs. Available within 24h
- 29 active countries
- 1+ paper per day logged
- 295 BGC floats
- 29 deep floats (75 by end of 2017)

New Missions: BGC-Argo

Why

- Understand the fundamental bio-geochemical cycling in the oceans, and thus the foundation of biological productivity patterns and carbon uptake
- To track any long term trends e.g there is already evidence of significant ocean oxygen changes

Status

- > 200 floats already carry oxygen QC and sensor stability work is progressing well
- Nitrate, pH (acidity), and bio-optical sensors have been developed and now deployed on a subset of Argo floats
- Regional pilot arrays (Atlantic, Southern Ocean, Med Sea) are rolling out, including SOCCOM
- Major progress on data handling and QC partnership with the Argo Data System
- Strong links to GOSHIP/IOCCP/GOOS.

Location of 293 active floats carrying one or more Bio-Geochemical sensors.

SOCCOM float locations: 69 active (JCOMMOPS)

Underwater Gliders – A flexible platform; multiple mission capabilities; U.S. national DAC; international Ocean Gliders project

> 45000 glider days

Network

SCCOOS Spray Gliders

warming starting near the beginning of 2014. (Dan Rudnick, SIO)

Weather, Marine, Arctic, and Climate Research, Products, and Services

Example of the FOO in action

Tropical Pacific Observing System-2020 Project

- To redesign and refine the TPOS to observe ENSO and advance scientific understanding of its causes,
- To determine the most efficient and effective observational solutions to support prediction systems for ocean, weather and climate services, and
- To advance understanding of tropical Pacific physical and biogeochemical variability and predictability.

Summary

- 20 years of effort have lead to an initial sustained global ocean observing system for the upper ocean
- New technologies (platforms, sensors, data comm, etc) are rapidly expanding capabilities and efficiencies
- Observational-based products and predictions are extremely helpful in engaging users/stakeholders
 - How do we encourage development of additional targeted products?
- Projects like TPOS-2020 are bringing together observationalists, researchers, modelers, stakeholders, and othes to deliver improved information

Deep Argo

Status

- Four Deep Argo float models have been developed and tested.
- A new CTD sensor (SBE-61) is under parallel development with improved stability and accuracy.
- Coordinated regional Deep Argo pilots are being deployed in the N. and S. Atlantic, S. Pacific, and Southern Ocean

Deep NINJA (left) and Deep PROVOR (below) 4000 m floats.

Deep APEX (above left) and Deep SOLO (above right) 6000 m floats.

Left: Strawplan for 1228 Deep Argo floats at nominal 5° x 5° spacing (Johnson et al, JAOT, 2015) over the global ocean where depth exceeds 2000 m. (Based on decorrelation statistics from GO-SHIP decadal repeat hydrography.

Arctic Observing Network (AON)

Main in-situ Elements of the Global Ocean Observing System

June 2016

Argo		DBCP		OceanSI	TES	SOT		Argo		DBCP		OceanSl	TES	SOT	
	Argo (799)	•	Surface Drifter (280)		Platforms (27)	*	VOSCIm-Automated (0)	•	Argo (138)	•	Surface Drifter (93)		Platforms (44)	#	VOSCIm-Automated (11)
٠	Argo (3)	0	Ice Buoy (1)	GO-SHIP		*	VOSCIm-Manned (5)	٠	Bio-Argo (33)		Fixed Platform (20)	GO-SHIP		#	VOSCIIm-Manned (19)
٠	Bio-Argo (83)		Moored Buoy (3)		GO-SHIP (22)	*	VOS-Automated (5)			0	Ice Buoy (28)		GO-SHIP (13)	¢	VOS-Automated (22)
			Tsunameter (1)			Ċ	VOS-Manned (14)				Moored Buoy (25)			æ	VOS-Manned (123)
							SOOP XBTs (6)				Tsunameter (2)				ASAP Radiosondes (2)
														Conorat	od by yaway icommons or

Establishing US Arctic Observing Network (AON) Office

International Arctic Systems for Observing the Atmosphere (IASOA)

